Pair interaction potentials of colloids by extrapolation of confocal microscopy measurements of collective suspension structure.

نویسندگان

  • Christopher R Iacovella
  • Reginald E Rogers
  • Sharon C Glotzer
  • Michael J Solomon
چکیده

A method for measuring the pair interaction potential between colloidal particles by extrapolation measurement of collective structure to infinite dilution is presented and explored using simulation and experiment. The method is particularly well suited to systems in which the colloid is fluorescent and refractive index matched with the solvent. The method involves characterizing the potential of mean force between colloidal particles in suspension by measurement of the radial distribution function using 3D direct visualization. The potentials of mean force are extrapolated to infinite dilution to yield an estimate of the pair interaction potential, U(r). We use Monte Carlo simulation to test and establish our methodology as well as to explore the effects of polydispersity on the accuracy. We use poly-12-hydroxystearic acid-stabilized poly(methyl methacrylate) particles dispersed in the solvent dioctyl phthalate to test the method and assess its accuracy for three different repulsive systems for which the range has been manipulated by addition of electrolyte.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-body forces at work: Three-body potentials derived from triplet correlations in colloidal suspensions

– Twoand three-particle correlation functions are computed from video-microscopy data of two-dimensional suspensions of charged colloids and inverted to derive the pair and three-body interaction potentials between the colloidal particles. Our method allows to resolve the full spatial dependence of the three-body potentials. Examining colloidal systems at different colloid densities, we find de...

متن کامل

The equilibrium intrinsic crystal-liquid interface of colloids.

We use confocal microscopy to study an equilibrated crystal-liquid interface in a colloidal suspension. Capillary waves roughen the surface, but locally the intrinsic interface is sharply defined. We use local measurements of the structure and dynamics to characterize the intrinsic interface, and different measurements find slightly different widths of this interface. In terms of the particle d...

متن کامل

Variations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy

Background  To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...

متن کامل

Structure of colloidal gels during microchannel flow.

We investigate the structure and flow behavior of colloidal gels in microchannels using confocal microscopy. Silica particles are first coated with a cationic polyelectrolyte and then flocculated by the addition of an anionic polyelectrolyte. In the quiescent state, the suspension is an isotropic and homogeneous gel. Under shear flow, the suspension contains dense clusters that yield at intercl...

متن کامل

Direct imaging of dynamical heterogeneities near the colloid-gel transition.

We observe the microscopic dynamics of a suspension of colloids with attractive interaction by confocal fluorescence microscopy to provide a deeper understanding of the relationship between local structure and dynamics near the gel transition. We study the distinct and self-parts of the van Hove density-density correlation function applied to our experimental data. Separable fast and slow popul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 16  شماره 

صفحات  -

تاریخ انتشار 2010